Dimerization of Vaccinia virus VH1 is essential for dephosphorylation of STAT1 at tyrosine 701.

نویسندگان

  • Adem C Koksal
  • Gino Cingolani
چکیده

The gene product of Vaccinia virus gene H1, VH1, is the first identified dual specificity phosphatase (DSP). The human genome encodes 38 different VH1-like DSPs, which include major regulators of signaling pathways, highly dysregulated in disease states. VH1 down-regulates cellular antiviral response by dephosphorylating activated STAT1 in the IFN-γ/STAT1 signaling pathway. In this report, we have investigated the molecular basis for VH1 catalytic activity. Using small-angle x-ray scattering (SAXS), we determined that VH1 exists in solution as a boomerang-shaped dimer. Targeted alanine mutations in the dimerization domain (aa 1-27) decrease phosphatase activity while leaving the dimer intact. Deletion of the N-terminal dimer swapped helix (aa 1-20) completely abolishes dimerization and severely reduces phosphatase activity. An engineered chimera of VH1 that contains only one active site retains wild-type levels of catalytic activity. Thus, a dimeric quaternary structure, as opposed to two cooperative active sites within the same dimer is essential for VH1 catalytic activity. Together with laforin, VH1 is the second DSP reported in literature for which dimerization via an N-terminal dimerization domain is necessary for optimal catalytic activity. We propose that dimerization may represent a common mechanism to regulate the activity and substrate recognition of DSPs, often assumed to function as monomers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies.

Host cell entry of vaccinia virus, the prototypic poxvirus, involves a membrane fusion event delivering the viral core and two proteinaceous lateral bodies (LBs) into the cytosol. Uncoating of viral cores is poorly characterized, and the composition and function of LBs remains enigmatic. We found that cytosolic cores rapidly dissociated from LBs and expanded in volume, which coincided with redu...

متن کامل

Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation.

We have analyzed the effects of vaccinia virus (VV) on gamma interferon (IFN-gamma) signal transduction. Infection of cells with VV 1 to 2 h prior to treatment with IFN-gamma inhibits phosphorylation and nuclear translocation of Stat1 and consequently blocks accumulation of mRNAs normally induced by IFN-gamma. While phosphorylation of other proteins in the IFN-gamma pathway was not affected, ac...

متن کامل

Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1.

Gamma interferon (IFN-gamma) signals to the nucleus through the activation, by tyrosine phosphorylation, of the latent cytoplasmic transcription factor Stat1 (signal transducer and activator of transcription). It has been demonstrated that the activity of Stat1 is dependent on tyrosine phosphorylation which is regulated by Jak tyrosine kinases as well as by the as-yet-unidentified protein tyros...

متن کامل

Wedelolactone, a naturally occurring coumestan, enhances interferon-γ signaling through inhibiting STAT1 protein dephosphorylation.

Signal transducers and activators of transcription 1 (STAT1) transduces signals from cytokines and growth factors, particularly IFN-γ, and regulates expression of genes involved in cell survival/death, proliferation, and migration. STAT1 is activated through phosphorylation on its tyrosine 701 by JAKs and is inactivated through dephosphorylation by tyrosine phosphatases. We discovered a natural...

متن کامل

SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei.

Signal transducer and activator of transcription (STAT) proteins are both tyrosine- and serine-phosphorylated, mediating signal transduction and gene regulation. Following gene regulation, STAT activity in the nucleus is then terminated by a nuclear protein phosphatase(s), which remains unidentified. Using novel antibody arrays to screen the Stat1-specific protein phosphatase(s), we identified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 16  شماره 

صفحات  -

تاریخ انتشار 2011